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Abstract: This paper proposes a new optimization method for solving Chance Constrained Problems (CCPs).
Specifically, instead of the conventional Monte Carlo simulation based on random sampling, Truncated Halton
Sequence (THS) is used to evaluate the probabilistic constraints in CCP. Then a group-based adaptive differential
evolution called JADE2G is combined with THS and used to solve CCP efficiently. Actually, there are two types
of CCPs, namely Joint CCP (JCCP) and Separate CCP (SCCP). Even though the proposed optimization method is
applicable to both JCCP and SCCP, it is demonstrated through the flood control planning formulated as JCCP.

Key–Words: Chance constrained problem, Differential evolution, Stochastic programming

1 Introduction
In real-world optimization problems, a wide range
of uncertainties have to be taken into account. Thus
optimization problems under uncertainties have been
studied for many years. Generally speaking, there are
two problem formulations for handling uncertainties
in optimization problems. The first one is the deter-
ministic optimization problem [1]. The second one is
the stochastic optimization problem [2].

Robust optimization problem is a deterministic
formulation. Since robust optimization problem al-
ways considers the worst-case performance under un-
certainties [1], the overestimation of uncertainties
may lead to a conservative decision in practice.

Chance Constrained Problem (CCP) [2] is one of
the possible formulations of the stochastic optimiza-
tion problem. CCP is also referred to as probabilistic
constrained problem [3]. Since the balance between
optimality and reliability can be taken with a given
probability, or a sufficiency level, a lot of real-world
applications have been formulated as CCP [3–6].

CCP has been studied in the field of stochastic
programming [2]. In the stochastic programming, the
optimization methods of nonlinear programming are
used to solve CCP. These optimization methods as-
sume that the functions in CCP are differentiable and
convex. Furthermore, a time-consuming Monte Carlo
simulation based on random sampling is needed to
evaluate the feasibility of the solutions of CCP. Even

though Evolutionary Algorithms (EAs) have been re-
ported recently to solve CCPs [4,7,8], they also spend
long times for Monte Carlo simulations.

Actually, there are two types of CCPs, namely
Joint CCP (JCCP) and Separate CCP (SCCP) [2]. In
our previous study [9,10], Weighted Empirical Cumu-
lative Distribution Function (W ECDF) was proposed
to evaluate the feasibility of the solutions of SCCP.
For solving SCCP, Differential Evolution (DE) [11]
was combined with W ECDF. However, the previous
optimization method was only applicable to SCCP.
For solving JCCP with W ECDF, the joint probability
of JCCP has to be approximated by using Bonferroni
inequality [10], which includes a large error.

In this paper, we propose a new optimiza-
tion method to solve CCP without using the time-
consuming Monte Carlo simulation based on random
sampling. By using the empirical probability based on
Truncated Halton Sequence (THS) [12], i.e. a novel
sampling technique, CCP is transformed to a relax-
ation problem. Furthermore, for solving the relaxation
problem efficiently, a new Adaptive DE (ADE) called
on JADE2G is used. The new optimization method
with THS is applicable to both JCCP and SCCP. We
demonstrate the proposed optimization method with
THS through a real-world application formulated as
JCCP, namely the flood control planning to make an
economical plan to protect an urban area from the
flood damage caused by torrential rain [10].
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The remainder of this paper is organized as fol-
lows. Section 2 describes two types of CCPs, namely
JCCP and SCCP. Section 3 explains THS. Section 4
proposes a new optimization method for solving CCP,
which is based on a new ADE combined with THS.
Section 5 formulates the flood control planning as
JCCP. Section 6 shows the results of numerical ex-
periments. Finally, Section 7 concludes this paper.

2 Problem Formulation
The uncertainties included in optimization problems
are represented by random variables ξ ∈ Ω. Symbols
used to describe problems are defined below.

◦ Decision variable x = (x1, · · · , xD) ∈ X ⊆ �D.

◦ Random variable ξ = (ξ1, · · · , ξK) ∈ Ω ⊆ �K .

◦ Measurable function
gm : X ×Ω → �, m = 1, · · · , M .

◦ Objective function g0 : X → �.

◦ Sufficiency level (Probability) α ∈ (0, 1).

◦ Pr(A) is occurrence probability of event A.

2.1 Robust Optimization Problem
Optimization problem with M ≥ 1 constraints and
one objective to be minimized is written as[

min
x∈X

g0(x)

sub. to gm(x) ≤ 0, m = 1, · · · , M
(1)

where a solution x ∈ X is called feasible if it satisfies
all constraints. Otherwise, x ∈ X is called infeasible.

Uncertainties are given by a vector of random
variables ξ ∈ Ω with support Ω ⊆ �K . Thereby,
the robust optimization problem [1] is defined as⎡⎢⎣ min

x∈X
g0(x)

sub. to ∀ ξ ∈ Ω : gm(x, ξ) ≤ 0,
m = 1, · · · , M.

(2)

Since the feasible solution x ∈ X of robust op-
timization problem in (2) has to satisfy all constraints
for every ξ ∈ Ω, it seems to be too conservative from
a practical engineering perspective.

2.2 Chance Constrained Problem (CCP)
By introducing a sufficiency level α ∈ (0, 1) into the
constraints in (2), CCP reduces the conservativism of
robust optimization problem. As stated above, there
are two types of formulations for CCP.

Firstly, JCCP is formulated as[
min
x∈X

g0(x)

sub. to h(x, Ω) ≥ α
(3)

where the probability h(x, Ω) is defined as

h(x, Ω) = Pr

( ∀ ξ ∈ Ω : gm(x, ξ) ≤ 0,
m = 1, · · · , M

)
. (4)

Secondly, SCCP is formulated as[
min
x∈X

g0(x)

sub. to hm(x, Ω) ≥ α, m = 1, · · · , M
(5)

where the probability hm(x, Ω) is defined as

hm(x, Ω) = Pr(∀ ξ ∈ Ω : gm(x, ξ) ≤ 0). (6)

3 Probability Estimation
For evaluating the chance constraint included in CCP
empirically, the indicator function is defined as

1l(A) =

{
1 if event A is true

0 if event A is false.
(7)

3.1 Random Sampling (RS)
CCP is usually difficult to solve because the time-
consuming Monte Carlo simulation is required to
evaluate the empirical probability that the chance con-
straint of CCP is satisfied with a solution x ∈ X by
using a huge number of samples of ξ ∈ Ω.

In the conventional Monte Carlo simulation [2],
a set of samples ξn ∈ Ξ ⊆ Ω, n = 1, · · · , N is
selected randomly. For each of the samples ξn ∈ Ξ,
the function value gm(x, ξn) is evaluated. Thereby,
the empirical probability h(x, Ξ) that approximates
the probability h(x, Ω) in (4) is calculated as

h(x, Ξ)

= Pr

( ∀ ξn ∈ Ξ : gm(x, ξn) ≤ 0,
m = 1, · · · , M

)
=

1

N

N∑
n=1

1l

(
gm(x, ξn) ≤ 0,
m = 1, · · · , M

)
.

(8)

From the law of large number [13], the empirical
probability should be close to the true value as

lim
N→∞

h(x, Ξ) → h(x, Ω). (9)

As a drawback of the empirical probability based
on Random Sampling (RS), the number of samples
ξn ∈ Ξ must be sufficiently large to approximate the
true probability accurately. That is because few sam-
ples are obtained from the tail part of support Ω.
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3.2 Weighted Halton Sequence (WHS)
In order to take samples from support Ω uniformly, we
use Halton Sequence (HS) [14], i.e. a low-discrepancy
sequence, instead of the random samples ξn ∈ Ξ.

HS generates points θn ∈ Θ̂, n = 1, · · · , N
uniformly in a hyper-cube Θ̂ ⊆ Ω. We suppose that
the Probability Density Function (PDF) of ξ ∈ Ω is
known. Let f : Ω → [0, ∞) be the PDF of ξ ∈ Ω.

Each point θn ∈ Θ̂ is weighted by the value of PDF
such as f(θn). By using Weighted HS (WHS) [9], the

empirical probability h(x, Θ̂) is calculated as

h(x, Θ̂)

=
1

W

N∑
n=1

f(θn) 1l

(
gm(x, θn) ≤ 0,
m = 1, · · · , M

)
(10)

where W = f(θ1) + · · ·+ f(θn) + · · ·+ f(θN ).
As a drawback of the empirical probability based

on WHS, a set of points θn ∈ Θ̂ includes many futile
points weighted by a small value as f(θn) ≈ 0.

3.3 Truncated Halton Sequence (THS)
Truncated HS (THS) θn ∈ Θ ⊆ Θ̂, n = 1, · · · N is
a subset of WHS. THS is defined as

Θ = {θn ∈ Θ̂ | f(θn) ≥ fmin} (11)

where the minimum PDF value fmin is a parameter.
By using the proposed THS [12], the empirical

probability h(x, Θ) is calculated as

h(x, Θ)

=
1

W

N∑
n=1

f(θn) 1l

(
gm(x, θn) ≤ 0,
m = 1, · · · , M

)
(12)

where W = f(θ1) + · · ·+ f(θn) + · · ·+ f(θN ).

3.4 Examples of RS, WHS, and THS
The random variables ξ = (ξ1, ξ2) ∈ Ω ⊆ �2 are
supposed to be following normal distributions as(

ξ1 ∼ N (μ1, σ
2
1) = N (1, 0.12)

ξ2 ∼ N (μ2, σ
2
2) = N (2, 0.22).

(13)

The correlation matrix of ξ ∈ Ω is given as

R =

(
1 ρ12
ρ21 1

)
=

(
1 −0.8

−0.8 1

)
(14)

where ρij is a correlation coefficient.

(a) N = 40 (b) N = 100

Figure 1: Random samples ξn ∈ Ξ ⊆ Ω

(a) N = 40 (b) N = 100

Figure 2: Weighted Halton sequence θn ∈ Θ̂

(a) N = 40 (b) N = 100

Figure 3: Truncated Halton sequence θn ∈ Θ

Fig. 1 shows ξn ∈ Ξ, n = 1, · · · , N generated

by RS from (13). Fig. 2 shows θn ∈ Θ̂ generated as
WHS. Fig. 3 shows θn ∈ Θ generated as THS with
fmin = 0.01 in (11). From Fig. 1 and Fig. 3, we can
confirm that THS covers a wider range than RS.

Let us consider a stochastic function defined as

g(x, ξ) = x1 ξ1 + x2 ξ2 + b. (15)

From the linearity of the normal distribution, the
value of g(x, ξ) also follows a normal distribution as⎛⎜⎜⎜⎝

g(x, ξ) ∼ N (μg(x), σ
2
g(x))

μg(x) = μ1 x1 + μ2 x2 + b

σ2
g(x) = σ2

1 x
2
1 + σ2

2 x
2
2

+2 ρ12 σ1 σ2 x1 x2

(16)

where ρ12 is the correlation coefficient in (14).
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Figure 4: Estimation error for sample size

From (16), we can derive the probability as

Pr(∀ ξ ∈ Ω : g(x, ξ) ≤ 0)

= Pr

(
g(x, ξ)− μg(x)

σg(x)
≤ −μg(x)

σg(x)

)
= Φ

(−μg(x)

σg(x)

) (17)

where Φ is the Cumulative Distribution Function
(CDF) of the standard normal distribution: N (0, 1).

We choose a solution x̂ = (1, 1) and b = −3.172
for the function in (15). From (17), we can obtain the
true probability such as Pr(g(x̂, ξ) ≤ 0) ≈ 0.900. In
order to estimate the true probability, we evaluate the
empirical probabilities with RS, WHS, and THS.

Fig. 4 compares the estimation errors between
RS, WHS, and THS. The estimation errors in Fig. 4
are averaged over 100 runs. Actually, the original HS
[14] is generated deterministically. Thus we use the
randomized HS [15] for WHS and THS. From Fig. 4,
we can confirm that the probability can be estimated
most correctly by using THS. Therefore, the proposed
THS is better than the other sampling techniques.

4 Proposed Approach to CCP
4.1 CCP formulation through THS
By using the empirical probability in (12) that is based
on THS θn ∈ Θ, n = 1, · · · , N and a correction
level β ≥ α, JCCP in (3) is reformed as[

min
x∈X

g0(x)

sub. to h(x, Θ) ≥ β.
(18)

The correction level is initialized as β = α and
regulated through the optimization described later.

Similarly, SCPP in (5) is reformed as[
min
x∈X

g0(x)

sub. to hm(x, Θ) ≥ β, m = 1, · · · , M
(19)

where the empirical probability is defined as

hm(x, Θ)

=
1

W

N∑
n=1

f(θn) 1l(gm(x, θn) ≤ 0).
(20)

4.2 Adaptive Differential Evolution
DE has been proven to be one of the most power-
ful global numerical optimization methods [16]. The
performance of DE depends on control parameters,
namely the scale factor and the crossover rate [11].
Thus, various Adaptive DEs (ADEs) have been re-
ported with the adjusting techniques of these control
parameters [17,18]. One of the most successful ADEs
is JADE [18]. However, as well as DE [11], JADE
can’t handle constrained optimization problems.

ADEGL [19] is an extended JADE which is also
contrived to solve unconstrained optimization prob-
lems. In ADEGL, the population is divided into mul-
tiple groups according to the ranks of their objective
values. The groups have their own probability distri-
butions to adjust the control parameters. It has been
shown that ADEGL outperforms JADE [19].

Inspired by ADEGL, we have proposed a new
ADE for solving constrained optimization problems,
which is called JADE based on 2 Groups (JADE2G)
[20]. In JADE2G, the population is also divided into
two groups, namely feasible ones and infeasible ones.
The two groups have their own probability distribu-
tions to adjust the control parameters respectively.
The procedure of JADE2G is detailed below.

4.2.1 Initialization
At each generation t, JADE2G has a set of solutions
xi ∈ Pt, i = 1, · · · , NP called population. Each
solution xi ∈ Pt is a real vector represented as

xi = (x1,i, · · · , xj,i, · · · , xD,i) ∈ �D (21)

where xj ≤ xj,i ≤ xj , j = 1, · · · , D.
By using a uniform distribution, a set of initial

solution xi ∈ P0 ⊆ X , i = 1, · · · , NP of JADE2G
is generated randomly as

xj,i ∼ U(xj , xj), j = 1, · · · , D (22)

where the population size NP is a fixed parameter.

4.2.2 Constraint-Handling
Even though the original versions of EAs including
JADE and ADEGL can’t deal with the constraints of
optimization problems, a number of Constraint Han-
dling Techniques (CHTs) have been reported [21].
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The feasibility rule [22] is one of the most widely used
CHTs because of its simplicity and efficiency. Thus
we also employ the feasibility rule for JADE2G.

First of all, the constraint violation φ(xi) of JCCP
in (18) is defined for a solution xi ∈ Pt as

φ(xi) = max{β − h(x, Θ), 0}. (23)

Similarly, the constraint violation φ(xi) of SCCP
in (19) is defined for a solution xi ∈ Pt as

φ(xi) =
M∑

m=1

max{β − hm(x, Θ), 0}. (24)

From the constraint violation, the feasibility of a
solution xi ∈ Pt can be discriminated as(

φ(xi) = 0 if xi ∈ Pt is feasible

φ(xi) > 0 if xi ∈ Pt is infeasible.
(25)

4.2.3 Mutation
Each solution xi ∈ Pt is assigned to a target vector
in turn. Then the mutation operator creates a mutation
vector vi ∈ X from the target vector xi ∈ Pt.

By using either of two Cauchy distributions, the
scale factor Fi ∈ [0, 1] of the target vector xi ∈ Pt is
generated in the same way with JADE [18] as

Fi ∼
{

C(μF1, 0.1) if φ(xi) = 0

C(μF2, 0.1) if φ(xi) > 0
(26)

where Fi ∈ � is truncated to be 1 if Fi > 1 holds or
regenerated from (26) if Fi < 0 holds.

A solution xp ∈ Pt is selected randomly from the
top 100p% solutions. Besides, two solutions xr1 and
xr2, r1 
= r2 
= i are also selected randomly from the
population Pt. Thereby, the mutation operator called
“DE/current-to-pbest/1” [18] is used to make a new
mutation vector vi ∈ �D with Fi ∈ [0, 1] as

vi = xi + Fi (xp − xi) + Fi (xr1 − xr2) (27)

where the outside element vj,i ∈ � is corrected as

vj,i =

{
(xj + xj,i)/2 if vj,i < xj

(xj + xj,i)/2 if vj,i > xj .
(28)

4.2.4 Crossover
By using either of two normal distributions, the
crossover rate CRi ∈ [0, 1] is generated in the same
way with JADE for the target vector xi ∈ Pt as

CRi ∼
{

N (μCR1, 0.1
2) if φ(xi) = 0

N (μCR2, 0.1
2) if φ(xi) > 0

(29)

where CRi ∈ � is truncated to [0, 1].
According to CRi ∈ [0, 1] in (29), the binomial

crossover makes a trial vector zi ∈ X by merging the
target vector xi and the mutation vector vi as

zj,i =

{
vj,i if randj ≤ CRi ∨ j = jr

xj,i otherwise
(30)

where randj ∈ [0, 1] is a uniformly distributed ran-
dom value. The subscript jr ∈ [0, D] is also selected
randomly, which ensures that the newborn zi ∈ X
differs from the existing solution xi ∈ Pt [11].

4.2.5 Selection
Each trial vector zi ∈ X , i = 1, · · · , NP is com-
pared with the corresponding target vector xi ∈ Pt.
If the following condition is satisfied, zi ∈ X is dis-
carded immediately and xi ∈ Pt is added to Pt+1.

(φ(xi) = 0) ∧ (g0(xi) < g0(zi)) (31)

Since the condition in (31) doesn’t require the
evaluation of φ(zi) based on the empirical probabil-
ity, this technique is very efficient. Only when the
condition in (31) is not satisfied, φ(zi) is evaluated.
Then if either of the following conditions is satisfied,
the trial vector zi ∈ X is added to Pt+1.(

φ(zi) < φ(xi)

(φ(zi) = φ(xi)) ∧ (g0(zi) ≤ g0(xi))
(32)

4.2.6 Parameter Adaptation
At the end of each generation t, the locations μF1

and μF2 of Cauchy distributions in (26) are updated
in each of the two groups as(

μF1 = (1− c)μF1 + c S2
F1/SF1

μF2 = (1− c)μF2 + c S2
F2/SF2

(33)

where SFk and S2
Fk, k = 1, 2 are the sums of Fi and

F 2
i in success cases. The success case means that the

trial vector zi ∈ X generated with Fi has been better
than the target vector xi ∈ Pt in each group. The
recommended value c = 0.1 [18] is used in (33).

At the end of each generation t, the means μCR1

and μCR2 in (29) are also updated respectively as

(
μCR1 = (1− c)μCR1 + c SCR1/SNS1

μCR2 = (1− c)μCR2 + c SCR2/SNS2
(34)

where SNSk, k = 1, 2 denote the numbers of success
cases. SCRk, k = 1, 2 denote the sums of CRi in
success cases. The value c = 0.1 is used in (34).
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4.3 Algorithm of JADE2G
Generally speaking, JADE2G applied to CCP will en-
counter the following three stages in the process of
search: 1) the population contains infeasible solutions
only; 2) the population consists of both feasible and
infeasible solutions; 3) the population contains feasi-
ble solutions only. The constraint violation φ(xi) is
minimized in the first stage, while the objective func-
tion g0(xi) is minimized in the final stage. As a result,
the control parameters Fi and CRi have to be changed
drastically depending on the stages. From (33) and
(34), JADE2G enables the quick change of them.

The maximum number of generations NT is used
as the termination condition of JADE2G. Thereby, the
algorithm of JADE2G is described as follows.

Step 1: Initialize the population P0 ⊆ X . t := 0.

Step 2: Set μF1 := 0.5 and μF2 := 0.8 in (26).

Step 3: Set μCR1 := 0.5 and μCR2 := 0.8 in (29).

Step 4: If the termination condition t = NT holds,
output the best one xb ∈ PNT

and terminate.

Step 5: By using the scale factor Fi and the crossover
rate CRi, generate the trial vectors zi ∈ X from
the target vectors xi ∈ Pt, i = 1, · · · , NP .

Step 6: Comparing zi ∈ X with xi ∈ Pt, choose the
better one for xi ∈ Pt+1, i = 1, · · · , NP .

Step 7: Update the locations μF1 and μF2.

Step 8: Update the means μCR1 and μCR2.

Step 9: t := t+ 1. Go back to Step 4.

4.4 Verification of Solution
The solution xb ∈ X of JCCP in (18) obtained by
JADE2G is checked whether it satisfies the chance
constraint of JCCP in (3). By using a huge number

of samples ξn ∈ Ξ̂ ⊆ Ω, n = 1, · · · , N̂ selected

randomly, the empirical probability h(xb, Ξ̂) with the
solution xb ∈ X is calculated as shown in (8). For
any ε ∈ (0, 1] and δ ∈ (0, 1], if the following sample

size N̂ is used for ξn ∈ Ξ̂ ⊆ Ω,

N̂ ≥ 1

2 ε2
log

(
2

δ

)
(35)

then Chernoff bound [23] ensures that

Pr
(∣∣∣h(xb, Ω)− h(xb, Ξ̂)

∣∣∣ ≤ ε
)
≥ 1− δ. (36)

Figure 5: Topological river model for Case Study 1

In this paper, ε = 10−3 and δ = 0.01 are chosen

in (35). Therefore, N̂ = 2, 649, 159 samples are used

to calculate the empirical probability h(xb, Ξ̂).
If the solution xb ∈ X of JCCP in (18) obtained

by JADE2G meets the condition in (37), we accept
xb ∈ X as a solution of JCCP in (3). Otherwise, we
increase the value of the correction level β in (18) just
a little. Then, in order to obtain another solution, we
apply JADE2G to JCCP in (18) again.

h(xb, Ξ̂) ≥ α (37)

5 Flood Control Planning
In the flood control planning [10], we make a plan to
protect an urban area from the flood damage caused
by torrential rain. The flood control reservoir system
design has been formulated as JCCP by using several
linear constraints [24]. In addition to the reservoir, we
consider the water-retaining capacity of forest in the
formulation of the flood control planning.

According to the model of a forest in watershed
[25], the area of forest a ∈ � is a constant. The
amount of rainfall ξ ∈ � per unit area is a random
variable. The water-retaining capacity of forest x ∈ �
per unit area is regarded as a decision variable because
it can be controlled through the forest maintenance
such as afforestation. Thereby, the inflow of water
q ∈ � from the forest to river can be described as

q(x, ξ, a) = a (ξ − x (1− exp(−ξ/x))) (38)

where the effect of past rainfall is not considered.

5.1 Case Study 1
Fig. 5 shows a topological river model. The arrow in-
dicates the direction where water flows. Symbol �
denotes a forest. There are two forests in Fig. 5.
It rains in each of the two forests. The amounts of
rainfall (ξ1 and ξ2) are random variables following the
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normal distributions defined by (13). The areas of two
forests (a1 and a2) are constants. The water-retaining
capacities of them (x1 and x2) are decision variables.
From (38), the inflows of water Qj ∈ �, j = 1, 2
from the two forests to the river are described as

Qj = q(xj , ξj , aj), j = 1, 2. (39)

Symbol � denotes a reservoir. There are two
reservoirs in Fig. 5. The capacities of reservoirs to
be built (x3 and x4) are also decision variables. From
(39), the inflow of water from the river to the town
located at the lower part of the river is

g(x, ξ)
= max{max{Q2 − x3, 0}+Q1 − x4, 0}. (40)

The inflow of water in (40) can be rewritten as

g(x, ξ)

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

g1(x, ξ) if (Q2 > x3)
∧ (Q1 +Q2 > x3 + x4)

g2(x, ξ) if (Q2 ≤ x3)
∧ (Q1 > x4)

0 otherwise

(41)

where the functions gm(x, ξ), m = 1, 2 are given as(
g1(x, ξ) = Q1 +Q2 − x3 − x4

g2(x, ξ) = Q1 − x4.
(42)

We want to prevent the inflow of water from the
river to the town in Fig. 5. The risk that the town
is damaged by flooding is restricted by a sufficiency
level α ∈ (0, 1). The cost for the flood control is the
objective function to be minimized. The maintenance
cost of a forest is proportional to its capacity. The
construction cost of a reservoir is proportional to the
square of its capacity. Consequently, from (41), the
flood control planning is formulated as⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

min g0(x) =
2∑

j=1

aj xj +
4∑

j=3

cj x
2
j

sub. to

Pr

( ∀ ξ ∈ Ω : gm(x, ξ) ≤ 0,
m = 1, 2

)
≥ α

0.5 ≤ x1 ≤ 1.5, 0.5 ≤ x2 ≤ 1.5
0 ≤ x3 ≤ 2, 0 ≤ x4 ≤ 3

(43)

where a1 = 2, a2 = 2, c3 = 3, and c4 = 1.

Figure 6: Topological river model for Case Study 2

5.2 Case Study 2
Fig. 6 shows a topological river model in the same
way with Fig. 5. There are five forests in Fig. 6.
The amounts of rainfall ξ ∈ Ω ⊆ �5 are given by
a multivariate normal distribution with the following
mean μ ∈ �5 and variance σ2 ∈ �5.(

μ = (2.0, 1.5, 2.5, 0.8, 1.0)

σ2 = (0.22, 0.32, 0.22, 0.12, 0.12)
(44)

The correlation matrix of ξ ∈ Ω is given as

R =

⎛⎜⎜⎜⎜⎝
1.0 −0.5 0.0 0.3 −0.5

−0.5 1.0 −0.8 0.0 0.2
0.0 −0.8 1.0 0.0 0.3
0.3 0.0 0.0 1.0 0.0

−0.5 0.2 0.3 0.0 1.0

⎞⎟⎟⎟⎟⎠ (45)

There is a town at the lower part of the river in
Fig. 6. We want to prevent the inflow of water from
the river to the town. The water-retaining capacities of
five forests xj , j = 1, · · · , 5 and the capacities of five
reservoirs xj , j = 6, · · · , 10 are decision variables.
As well as JCCP in (43), the cost for the flood control
is the objective function to be minimized. Thus the
flood control planning in Fig. 6 is formulated as⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

min g0(x) =

5∑
j=1

aj xj +

10∑
j=6

cj x
2
j

sub. to

Pr

( ∀ ξ ∈ Ω : gm(x, ξ) ≤ 0,
m = 1, · · · , 9

)
≥ α

0.5 ≤ xj ≤ 1.5, j = 1, · · · , 5
0 ≤ xj ≤ 3, j = 6, 7, 8
0 ≤ xj ≤ 4, j = 9, 10

(46)

where aj = 2, j = 1, · · · , 5, cj = 3, j = 6, 7, 8,
c9 = 2, and c10 = 1. In the same way as we have
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Table 1: Experimental results for JCCP in (43)

ρ12 g0(xb) h(xb, Θ) h(xb, Ξ̂) β

−0.8 11.018 0.901 0.913 0.918

0.0 11.583 0.921 0.908 0.938

+0.8 11.994 0.926 0.904 0.941

shown in (40), (41), and (42), the function gm(x, ξ),
m = 1, · · · , 9 can be derived as⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

g1(x, ξ) = Q1 +Q2 +Q3 +Q4 +Q5

−x6 − x7 − x8 − x9 − x10
g2(x, ξ) = Q1 +Q2 +Q4 +Q5

−x6 − x7 − x9 − x10
g3(x, ξ) = Q1 +Q3 +Q4 +Q5

− x6 − x8 − x9 − x10
g4(x, ξ) = Q2 +Q3 +Q4 +Q5

−x7 − x8 − x9 − x10
g5(x, ξ) = Q1 +Q4 +Q5

−x6 − x9 − x10
g6(x, ξ) = Q2 +Q4 +Q5

−x7 − x9 − x10
g7(x, ξ) = Q3 +Q4 +Q5

−x8 − x9 − x10
g8(x, ξ) = Q4 +Q5 − x9 − x10
g9(x, ξ) = Q5 − x10

(47)

where Qj = q(xj , ξj , aj), j = 1, · · · , 5.

6 Numerical Experiment
6.1 Case Study 1
JADE2G is coded by MATLAB [26]. Then JADE2G
is applied to the flood control planning stated as JCCP
in (43). The control parameters of JADE2G are cho-
sen as NP = 20, NT = 60, and p = 0.2. About
N = 60 points θn ∈ Θ, n = 1, · · · , N are used
to evaluate each solution xi ∈ Pt. The sufficiency
level in (43) is chosen as α = 0.9. Three correlation
coefficients, namely ρ12 = ±0.8 and ρ12 = 0, are
considered in (14) for the amount of rainfall ξ ∈ Ω.
JADE2G is applied to each JCCP 10 times.

Table 1 shows the results of experiment averaged
over 10 runs. The objective function value g0(xb) of
the best solution xb ∈ X obtained by JADE2G, the

empirical probabilities h(xb, Θ) and h(xb, Ξ̂), and
the correction level β used for JCCP in (18) are shown

in Table 1. From (36), we can regard h(xb, Ξ̂) as the
true probability h(xb, Ω) achieved by xb ∈ X . From
Table 1, we can confirm that the condition in (37) is

Figure 7: Truncated Halton Sequence θn ∈ Θ

Figure 8: Random samples ξn ∈ Ξ

satisfied in all cases. Furthermore, we can see that the
value of g0(xb) increases proportionally to ρ12.

6.2 Case Study 2
By changing the value of sufficiency level α ∈ (0, 1),
JADE2G is applied to to the flood control planning
stated as JCCP in (46). The control parameters of
JADE2G are chosen as NP = 50, NT = 200, and
p = 0.2. About N = 300 points θn ∈ Θ of THS
are used to evaluate each xi ∈ Pt. Fig. 7 shows the
points θn ∈ Θ, n = 1, · · · , N . Considering the PDF
of ξ ∈ Ω, fmin = 10−3 is used. Incidentally, Fig. 8
shows N = 300 samples ξn ∈ Ξ generated by RS.

Table 2 shows the results of experiment. The
objective function value g0(xb) of the best solution
xb ∈ X , the empirical probabilities h(xb, Θ) and

h(xb, Ξ̂) are shown in Table 2. The correction level
is chosen as β = α. Therefore, the condition in (37)
is not yet satisfied by xb ∈ X in some cases.

Fig. 9 shows the trade-off relationship between
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Table 2: Experimental results for JCCP in (46)

α g0(xb) h(xb, Θ) h(xb, Ξ̂) β

0.95 33.682 0.950 0.926 0.95

0.90 33.467 0.914 0.910 0.90

0.85 32.901 0.859 0.839 0.85

0.80 32.668 0.819 0.810 0.80

0.75 32.221 0.752 0.734 0.75

0.70 32.178 0.711 0.699 0.70

0.65 31.682 0.652 0.616 0.65

Figure 9: Trade-off between g0(xb) and α

the objective function value g0(xb) and the sufficiency
level α ∈ (0, 1) that satisfies the condition in (37)
for the solution xb ∈ X . The experimental results in
Table 2 are summarized by Fig. 9. From Fig. 9, we
can see that the safety of the town shown in Fig. 6
depends on the budget for the flood control.

7 Conclusion
A number of real-world applications can be formu-
lated as CCPs. However, the time-consuming Monte
Carlo simulation based on random sampling has been
required to solve CCP. In this paper, an optimization
method based on THS and JADE2G was proposed
to solve CCP efficiently. Even though there are two
types of CCPs, namely JCCP and SCCP, the proposed
method is applicable to both types of CCPs.

The performance of the optimization method
was demonstrated through a real-world application,
namely the flood control planning formulated as
JCCP. By the way, in the flood control planning,
we assumed the normal distribution for the amount
of rainfall, but the probability estimation technique
based on THS can be applied effectively to arbitrary
probability distribution if its PDF is provided.

In the future work, we would like to demonstrate
the usefulness of the proposed method through the
various real-world applications formulated as CCPs.
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